
CS 1112 Introduction to
Computing Using MATLAB

Instructor: Dominic Diaz

Website:
https://www.cs.cornell.edu/courses/cs111
2/2022fa/

Today: Vectorized code + matrices

https://www.cs.cornell.edu/courses/cs1112/2022fa/
https://www.cs.cornell.edu/courses/cs1112/2022fa/

Agenda and announcements
● Last time

○ Vectorized computation
○ 2D arrays - matrix

● Today
○ More matrices

● Announcements
○ Discussion 08 next week (10/12) will have optional problems – problems to help

you study for prelim 1
○ Project 3 late deadline TONIGHT 10/6 (only 5% deduction for late submission
○ “Check your prelim 1 time/location” on CMS–read the “grading comment” to find

exam time/location. Any request for alternative arrangements (including
conflicting exams) is due as a “regrade request” in CMS by 10/7 at 11 PM.

○ Consultants will be holding tutoring
■ Wed & Thurs (10/12 - 10/13)
■ Sun & Mon (10/16 - 10/17)

○ NO OFFICE HOURS OVER BREAK

2D array: matrix

● A 2D array is like a table, and is also called a
matrix

● Two indices identify the position of a value in a
matrix

 A(r,c)

● If we set [nr, nc] = size(A), then
○ 1 <= r <= nr
○ 1 <= c <= nc

c

r

A

First index: row index
Second index: column index

Example: A cost/inventory problem
● A merchant has 3 different suppliers that stock 5 different

products
● The cost of each product varies from supplier to supplier
● Inventory amount varies from supplier to supplier

Two matrices storing all relevant information:

10 36 22 15 62

12 35 20 12 66

13 37 21 16 59

38 5 99 34 42

82 19 83 12 42

51 29 21 56 87

C Inv

C(i,j) is what it costs
supplier i to supply product j

Inv(i,j) is how many units
supplier i has of product j

Problem statement

A customer submits a purchase order that is
to be shipped from a single supplier.
● Among the suppliers that can fill the order,

who can do it most cheaply?
○ Which suppliers have enough

inventory?
○ How much does it cost each supplier

to fill the order?

10 36 22 15 62

12 35 20 12 66

13 37 21 16 59

38 5 99 34 42

82 19 83 12 42

51 29 21 56 87

C

Inv

C(i,j): what it costs supplier
i to supply product j

Inv(i,j): how many units
supplier i has of product j

1 0 12 29 5

PO

PO(j): is the number of
product j’s the client wants

Which supplier can fill order?

Supplier 2:
1 < 82, 0 < 19, 12 < 83, 29 > 12, 5 < 42
No, warehouse 2 cannot fill the order!

10 36 22 15 62

12 35 20 12 66

13 37 21 16 59

38 5 99 34 42

82 19 83 12 42

51 29 21 56 87

C

Inv

C(i,j): what it costs supplier
i to supply product j

Inv(i,j): how many units
supplier i has of product j

1 0 12 29 5

PO

PO(j): is the number of
product j’s the client wants

% Determine if supplier 2 can fill order
i = 2;
tf = true;
for j = 1:length(PO)

tf = tf && Inv(i,j) >= PO(j);
end

Which supplier can fill order? 10 36 22 15 62

12 35 20 12 66

13 37 21 16 59

38 5 99 34 42

82 19 83 12 42

51 29 21 56 87

C

Inv

C(i,j): what it costs supplier
i to supply product j

Inv(i,j): how many units
supplier i has of product j

1 0 12 29 5

PO

PO(j): is the number of
product j’s the client wants

% determine if supplier i can fill order
i = 2;
tf = true;
for j = 1:length(PO)

tf = tf && Inv(i,j) >= PO(j);
end

Variable workspace

i

tf

j

2

T

1

Which supplier can fill order? 10 36 22 15 62

12 35 20 12 66

13 37 21 16 59

38 5 99 34 42

82 19 83 12 42

51 29 21 56 87

C

Inv

C(i,j): what it costs supplier
i to supply product j

Inv(i,j): how many units
supplier i has of product j

1 0 12 29 5

PO

PO(j): is the number of
product j’s the client wants

% determine if supplier i can fill order
i = 2;
tf = true;
for j = 1:length(PO)

tf = tf && Inv(i,j) >= PO(j);
end

Variable workspace

i

tf

j

2

T

2

Which supplier can fill order? 10 36 22 15 62

12 35 20 12 66

13 37 21 16 59

38 5 99 34 42

82 19 83 12 42

51 29 21 56 87

C

Inv

C(i,j): what it costs supplier
i to supply product j

Inv(i,j): how many units
supplier i has of product j

1 0 12 29 5

PO

PO(j): is the number of
product j’s the client wants

% determine if supplier i can fill order
i = 2;
tf = true;
for j = 1:length(PO)

tf = tf && Inv(i,j) >= PO(j);
end

Variable workspace

i

tf

j

2

T

3

Which supplier can fill order? 10 36 22 15 62

12 35 20 12 66

13 37 21 16 59

38 5 99 34 42

82 19 83 12 42

51 29 21 56 87

C

Inv

C(i,j): what it costs supplier
i to supply product j

Inv(i,j): how many units
supplier i has of product j

1 0 12 29 5

PO

PO(j): is the number of
product j’s the client wants

% determine if supplier i can fill order
i = 2;
tf = true;
for j = 1:length(PO)

tf = tf && Inv(i,j) >= PO(j);
end

Variable workspace

i

tf

j

2

F

4

Which supplier can fill order? 10 36 22 15 62

12 35 20 12 66

13 37 21 16 59

38 5 99 34 42

82 19 83 12 42

51 29 21 56 87

C

Inv

C(i,j): what it costs supplier
i to supply product j

Inv(i,j): how many units
supplier i has of product j

1 0 12 29 5

PO

PO(j): is the number of
product j’s the client wants

% determine if supplier i can fill order
i = 2;
tf = true;
for j = 1:length(PO)

tf = tf && Inv(i,j) >= PO(j);
end

Variable workspace

i

tf

j

2

F

4

Which supplier can fill the order? 10 36 22 15 62

12 35 20 12 66

13 37 21 16 59

38 5 99 34 42

82 19 83 12 42

51 29 21 56 87

C

Inv

C(i,j): what it costs supplier
i to supply product j

Inv(i,j): how many units
supplier i has of product j

1 0 12 29 5

PO

PO(j): is the number of
product j’s the client wants

function tf = iCanFill(i, Inv, PO)
% tf is true if supplier i can fill the
% purchase order. Otherwise, false.

% determine if supplier i can fill order
tf = true;
for j = 1:length(PO)

tf = tf && Inv(i,j) >= PO(j);
end

Which supplier can fill the order? 10 36 22 15 62

12 35 20 12 66

13 37 21 16 59

38 5 99 34 42

82 19 83 12 42

51 29 21 56 87

C

Inv

C(i,j): what it costs supplier
i to supply product j

Inv(i,j): how many units
supplier i has of product j

1 0 12 29 5

PO

PO(j): is the number of
product j’s the client wants

function tf = iCanFill(i, Inv, PO)
% tf is true if supplier i can fill the
% purchase order. Otherwise, false.

% determine if supplier i can fill order
nProd = length(PO);
j = 1;

while j <= nProd && Inv(i,j) >= PO(j)
j = j + 1;

end
tf = __________;

Alternative solution!

Which supplier can fill the order? 10 36 22 15 62

12 35 20 12 66

13 37 21 16 59

38 5 99 34 42

82 19 83 12 42

51 29 21 56 87

C

Inv

C(i,j): what it costs supplier
i to supply product j

Inv(i,j): how many units
supplier i has of product j

1 0 12 29 5

PO

PO(j): is the number of
product j’s the client wants

function tf = iCanFill(i, Inv, PO)
% tf is true if supplier i can fill the
% purchase order. Otherwise, false.

% determine if supplier i can fill order
nProd = length(PO);
j = 1;

while j <= nProd && Inv(i,j) >= PO(j)
j = j + 1;

end
tf = j > nProd;

Alternative solution!

How much for supplier i to fill order? 10 36 22 15 62

12 35 20 12 66

13 37 21 16 59

38 5 99 34 42

82 19 83 12 42

51 29 21 56 87

C

Inv

C(i,j): what it costs supplier
i to supply product j

Inv(i,j): how many units
supplier i has of product j

1 0 12 29 5

PO

PO(j): is the number of
product j’s the client wants

function theBill = iCost(i,C,PO)

% The cost when factory i fills

% the purchase order

nProd = length(PO);

theBill = 0;

for j=1:nProd

 theBill = theBill + C(i,j)*PO(j);

end

Finding the cheapest 10 36 22 15 62

12 35 20 12 66

13 37 21 16 59

38 5 99 34 42

82 19 83 12 42

51 29 21 56 87

C

Inv

C(i,j): what it costs supplier
i to supply product j

Inv(i,j): how many units
supplier i has of product j

1 0 12 29 5

PO

PO(j): is the number of
product j’s the client wants

function [iBest,minBill] = Cheapest(C,Inv,PO)

% output the index (iBest) of the supplier that can

% complete the product order at the cheapest price

% (minBill).

[nFact,~] = size(C);

iBest = 0;

minBill = _______;

for i = 1:nFact

iBill = iCost(i,C,PO);

if iBill < minBill && iCanFill(i,Inv,PO)

iBest = i;

minBill = iBill;

end

end

What can we input here
to make the code work
and not do repeat
calculations?

Finding the cheapest 10 36 22 15 62

12 35 20 12 66

13 37 21 16 59

38 5 99 34 42

82 19 83 12 42

51 29 21 56 87

C

Inv

C(i,j): what it costs supplier
i to supply product j

Inv(i,j): how many units
supplier i has of product j

1 0 12 29 5

PO

PO(j): is the number of
product j’s the client wants

function [iBest,minBill] = Cheapest(C,Inv,PO)

% output the index (iBest) of the supplier that can

% complete the product order at the cheapest price

% (minBill).

[nFact,~] = size(C);

iBest = 0;

minBill = inf;

for i = 1:nFact

iBill = iCost(i,C,PO);

if iBill < minBill && iCanFill(i,Inv,PO)

iBest = i;

minBill = iBill;

end

end

Example: Plotting collabs between singers

Say we have collaborations between singers stored in a
matrix called collabs. collabs(i,j) = 1 if singer i has
a song with singer j. Otherwise, 0.

Singer 1: Ariana
Singer 2: Megan Thee Stallion
Singer 3: Miley Cyrus
…
Singer 10: Lady Gaga

0 1 1 0 1 0 1 0 1 1

1 0 0 0 1 0 1 1 0 0

1 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0

1 1 1 0 0 0 0 0 0 0

0 1 0 1 0 1 0 0 0 0

1 0 1 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

Rain on me

Don’t call me angel

Plotting lines between singers who have a song together

[nr, nc] = size(collabs);

for r = 1:nr
for c = 1:nc

if collabs(r,c) == 1
% plot a line between celeb i and j

end
end

end These loops are very inefficient!
Why?

They check every pair twice and they
check if singers have collaborated
with themselves.

Because we only need to check each pair once
and we do not need to check if a singer
collaborated with themself, we only need to loop
through the green cells.

0 1 1 0 1 0 1 0 1 1

1 0 0 0 1 0 1 1 0 0

1 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0

1 1 1 0 0 0 0 0 0 0

0 1 0 1 0 1 0 0 0 0

1 0 1 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

[nr, nc] = size(collabs);

for r = 1:nr
for c = r+1:nc

if collabs(r,c) == 1
% plot a line between celeb i and j

end
end

end

0 1 1 0 1 0 1 0 1 1

1 0 0 0 1 0 1 1 0 0

1 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0

1 1 1 0 0 0 0 0 0 0

0 1 0 1 0 1 0 0 0 0

1 0 1 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

[nr, nc] = size(collabs);

for r = 1:nr
for c = r+1:nc

if collabs(r,c) == 1
% plot a line btwn celebs i,j

end
end

end

See drawCelebNetwork.m for
code. It uses constructs like cell
arrays and char arrays that we
have not covered in this class….
yet!

[nr, nc] = size(collabs);
for r = 1:nr

for c = 1:r-1
if collabs(r,c) == 1

% plot line btwn celeb i, j
end

end
end

0 1 1 0 1 0 1 0 1 1

1 0 0 0 1 0 1 1 0 0

1 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0

1 1 1 0 0 0 0 0 0 0

0 1 0 1 0 1 0 0 0 0

1 0 1 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

Poll Everywhere

Accessing more than just one element
at a time
a = M(1,:);

0 1 5 9 7

7 -5 -1 20 26

19 -8 13 4 2

M

b = M(1,2:4);

c = M(:,2:4);

d = M(1:2:3, 1:2:5);

0 1 5 9 7

1 5 9

1 5 9

-5 -1 20

-8 13 4

0 5 7

19 13 2

e = M(M(1,2), 1:M(end,end):end); 0 5 7

How can you access just the yellow elements?

A = M(1:2:end, 2:2:end);
M

